Abstract Submitted for the HAW05 Meeting of The American Physical Society

Nuclear polarization of the ground state of ⁵⁷Cu produced through a nucleon pick up reaction at the primary beam energy 140 MeV/nucleon KEI MINAMISONO, PAUL MANTICA, THEODORE MERTZ-IMEKIS, ANDREW DAVIES, JORGE PEREIRA, JOSH STOKER, BRYAN TOM-LIN, R. RANJITH WEERASIRI, NSCL, Michigan State University, MICHAEL HASS, Weizmann Institute, WARREN ROGERS, Westmont College — In order to measure the magnetic moment of the ground state of ${}^{57}\text{Cu}(I^{\pi}=3/2^{-}, T_{1/2}=199$ ms), which is one proton outside doubly-magic 56 Ni, a polarized 57 Cu beam has been developed at NSCL/MSU. ⁵⁷Cu ions were produced through a (p, 2n) reaction process of a 140 MeV/nucleon ⁵⁸Ni primary beam on Be target and separated from other products in the A1900 fragment separator. To produce polarization, ⁵⁷Cu ions ejected at an angle of 2 degree relative to the normal beam axis were selected. Polarized ⁵⁷Cu ions were implanted into a single-crystal NaCl under an external magnetic field $H_0 > 0.1$ T. The degree of the polarization was measured by an H_0 on and off technique with normalization runs without polarization. The degree of the polarization as a function of the momentum of 57 Cu and H_0 will be discussed.

> Kei Minamisono NSCL, Michigan State University

Date submitted: 10 May 2005

Electronic form version 1.4