Abstract Submitted for the HAW05 Meeting of The American Physical Society

Alpha-gamma decay studies of ²⁶¹Rf and ²⁵⁷No M. ASAI, K. TSUKADA, T. ISHII, Y. NAGAME, I. NISHINAKA, K. AKIYAMA, A. TOYOSHIMA, S. ICHIKAWA, T. ICHIKAWA, Japan Atomic Energy Research Institute, M. SAKAMA, Univ. of Tokushima, H. HABA, RIKEN, K. SUEKI, Univ. of Tsukuba, M. SHIBATA, Nagoya Univ., Y. KOJIMA, Hiroshima Univ., Y. OURA, Tokyo Metropolitan Univ. — Alpha-gamma and alpha-electron coincidence measurements were performed for the α decay of ²⁶¹Rf and ²⁵⁷No to establish Nilsson single-particle states in odd-mass superheavy nuclei. The neutron single-particle configuration of 3/2[622] has been assigned to the ground state of ²⁵⁷No as well as to the 124.1 keV level in ²⁵³Fm. It was found that the ground state configuration of ²⁵⁷No is different from that of the lighter N = 155 isotones ²⁵⁵Fm and ²⁵³Cf. Measured excitation energy in ²⁵⁷No populated by the α decay of ²⁶¹Rf ($T_{1/2} = 67$ s) revealed that another α -decaying state in ²⁶¹Rf with $T_{1/2} = 4.2$ s reported in the α -decay chain of ²⁶¹Rf is discussed on the basis of the α - γ coincidence results.

Masato Asai Japan Atomic Energy Research Institute

Date submitted: 12 May 2005

Electronic form version 1.4