HAW05-2005-000043

Abstract for an Invited Paper for the HAW05 Meeting of the American Physical Society

Nucleosynthesis of rare heavy elements in supernova explosions TAKEHITO HAYAKAWA, Japan Atomic Energy Research Institute

The origin of the p-nuclei among heavy elements has been discussed for long years. Analyzing the solar system abundances, we have found the empirical scaling laws concerning the p- and s-nuclei with the same atomic number. The abundance ratio of s- and p- nuclei is almost constant with a wide range of the atomic number. In addition, the ratio of two p-nuclei with the same atomic number is also constant. They are an evidence that twenty-seven p-nuclei are dominantly synthesized by the p-process in SNe. We have calculated the ratios by a Type II SN model and the results have reproduced these scalings. The other eight p-nuclei may be synthesized by different processes such as the ν -process. We have proposed two novel concepts of universality of the p- process and a new nuclear cosmochronometer of the p-process, which are based on the scalings. We also report the experimental study using thermal neutrons provided by nuclear reactors for the ¹⁸⁷Re-¹⁸⁷Os cosmochronometer of the r-process. Co-authors: Toshiyuki Shizuma, Nobuyuki Iwamoto, Satoshi Chibam, Tuneo Nakagawa, Nobuo Shinohara, Toshitaka Kajino, National Astronomical Observatory; Hideyuki Umeda, Ken'ichi Nomoto, University of Tokyo.