Abstract Submitted for the HAW05 Meeting of The American Physical Society

Suppression of Θ^+ ($\mathbf{J}^P=3/2$) photoproduction from the proton SEUNG-IL NAM, RCNP, Osaka Univ., Japan and Dept.of Phys. & NuRI, Pusan Natl. Univ., Korea, ATSUSHI HOSAKA, RCNP, Osaka Univ., Japan , HYUN-CHUL KIM, Dept.of Phys. & NuRI, Pusan Natl. Univ., Korea — We investigate the photoproduction of Θ^+ from the proton and neutron, $\gamma N \to \mathrm{Kbar}\Theta^+$. Assuming that spin and parity of Θ^+ are $\mathbf{J}^P=3/2$, it is shown that the production from the proton is strongly suppressed as compared with that from the neutron. This could provide a possible explanation for the null result of the recent CLAS experiment in finding Θ^+ via the reaction $\gamma p \to \mathrm{Kbar}^0 \Theta^+$.

Seung-Il Nam RCNP, Osaja Univ., Japan and Dept.of Phys. & NuRI, Pusan Natl. Univ., Korea

Date submitted: 18 May 2005 Electronic form version 1.4