Abstract Submitted for the HAW05 Meeting of The American Physical Society

Feeding of the $11/2^-$ isomers in ^{191,193}Ir and ¹⁹⁷Au. N. FOTI-ADES, R.O. NELSON, M. DEVLIN, LANL, J.A. BECKER, P.E. GARRETT, W. YOUNES, LLNL — The $(n, n'\gamma)$ reaction was used to study excited states and to measure absolute partial γ -ray cross sections in ¹⁹¹Ir, ¹⁹³Ir and ¹⁹⁷Au. The data were taken using the GEANIE spectrometer comprised of 26 high-purity Ge detectors with 20 BGO escape-suppression shields. The broad-spectrum pulsed neutron source of the Los Alamos Neutron Science Center's WNR facility provided neutrons in the energy range from 0.6 to 250 MeV. The time-of-flight technique was used to determine the incident neutron energies. The absolute partial cross sections for hundreds of γ -rays from several reaction channels were determined. The partial γ -ray cross sections of several transitions feeding directly the $11/2^-$ isomers and ground states in ^{191,193}Ir and ¹⁹⁷Au were obtained. In the case of ¹⁹⁷Au, where the structure above the $11/2^{-}$ isomer was not known before, the partial γ -ray cross sections and the γ - γ coincidence data were used to built the level scheme above the isomer up to ~ 2 MeV excitation energy. The feeding of the $11/2^{-}$ isomers, which originate from the odd proton occuping the $h_{11/2}$ orbital, was found in all three experiments to be very similar and it is compared to the feeding determined for the ground states of ¹⁹¹Ir, ¹⁹³Ir and ¹⁹⁷Au. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Los Alamos National Laboratory under contract No. W-7405-ENG-36 and Lawrence Livermore National Laboratory under contract No. W-7405-ENG-48.

> Ronald Nelson Los Alamos National Lab

Date submitted: 18 May 2005

Electronic form version 1.4