Abstract Submitted for the HAW05 Meeting of The American Physical Society

Real-time Measurements of Carbon Partitioning in Plants Using ¹¹CO₂ M.R. KISER, C.R. HOWELL, A.S. CROWELL, Duke University Physics Department and TUNL, C.D. REID, Duke University Biology Department — Understanding the effects that increased levels of atmospheric carbon dioxide (CO_2) can have on plants is of global importance. Of particular concern is the effect on crop yield and plant growth, as well as the potential of long-term carbon sequestration via natural processes. To better understand plant response to increased CO_2 levels, we use a short half-life radioisotope labelling process to trace the dynamics of carbon allocation and translocation within the plant. Using the positron-emitter carbon-11, which is produced at Triangle Universities Nuclear Laboratory via the reaction ${}^{14}N(p, \alpha){}^{11}C$, we are able to introduce ${}^{11}CO_2$ to plants grown at current and projected CO₂ concentrations at the Duke University Phytotron. Positron emission imaging techniques are then used to trace the transport and distribution of carbon throughout the plant. Results from collimated, single-detector measurements and a low spatial resolution (\sim 1cm) planar positron emission imager will be presented, as well as plans for ¹³N studies and the construction of a high spatial resolution $(\sim 3 \text{mm})$ planar imager.

> Matthew Kiser Duke University Physics Department and TUNL

Date submitted: 18 May 2005

Electronic form version 1.4