Abstract Submitted for the HAW05 Meeting of The American Physical Society

Measurement of the nuclear transparency in $A(e,e'\pi^+)$ reactions¹ B. $CLASIE^2$, D. $DUTTA^3$, H. $GAO^{2,3}$, X. $QIAN^3$ — Color transparency is a phenomenon predicted by QCD in which hadrons produced at large Q^2 can pass through the nuclear medium with little or no interaction. Results will be presented from E01-107, an experiment that was successfully completed at Hall C at Jefferson Laboratory in 2004, where the pion electroproduction cross section from $Q^2 = 1.1$ to 4.8 (GeV)² was measured. The nuclear transparency is formed by the ratio of (σ_A/σ_H) from the data and (σ_A/σ_H) from a model of electroproduction from nuclei that does not include $\pi - N$ final state interactions. A signature of color transparency is the enhancement of the nuclear transparency at large Q^2 compared with predictions based on Glauber multiple scattering theory. An effect as large as $\approx 40\%$ due to color transparency is predicted in this Q^2 range by some models. This experiment will provide the first nuclear transparency data from $(e,e'\pi^+)$ reactions and seek unambiguous evidence for the existence of the color transparency effect. This work is supported by the US department of Energy under contract number DE-FC02-94ER40818 and DE-FG02-03ER41231 and Duke University.

¹On behalf of the Jefferson Laboratory E01-107 collaboration ²Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA ³Triangle Universities Nuclear Laboratory, Duke University, Durham, NC 277

B. Clasie

Date submitted: 18 Aug 2005

Electronic form version 1.4