Abstract Submitted for the HAW05 Meeting of The American Physical Society

Determination of the ¹²N \rightarrow ¹¹C+p asymptotic normalization coefficient from the indirect ¹¹C(d,n)¹²N transfer reaction.¹ DONGWON LEE, JAMES POWELL, KARI PERAJARVI, FANQING GUO, DENNIS MOLTZ, JIM O'NEIL, JOSEPH CERNY, LAWRENCE BERKELEY NATIONAL LABORA-TORY TEAM — The ¹¹C(p, γ)¹²N reaction has been known to be an important branch point in supermassive low-metallicity stars because it could produce CNO seed nuclei before the traditional triple-alpha process turns on. In the present work, the ¹¹C(d,n)¹²N transfer reaction was employed with a radioactive ion beam of 150 MeV ¹¹C with 6×10⁵ ions/s on target from the BEARS project at the 88" cyclotron at LBNL. Excellent agreement was obtained between the experimental cross sections (θ_{cm} =10.9 ° to 71.5 °) and DWBA calculations. The asymptotic normalization coefficient (ANC) was deduced to be $(C_{eff}^{12N})^2 = (C_{p1/2}^{12N})^2 = 1.85 \pm 0.27 fm^{-1}$, which is in good agreement with the published result from ¹⁴N(¹¹C, ¹²N)¹³C. The astrophysical S-factor at zero-energy, $S(0) = 0.099 \pm 0.020 \ keV \ b$, was also calculated based on the extracted ANC value. These results confirm that the ¹¹C(p, γ)¹²N

¹Supported in part by the US DOE Contract No. DE-AC03-76SF00098

Dongwon Lee

Date submitted: 23 May 2005

Electronic form version 1.4