Abstract Submitted
for the HAW05 Meeting of
The American Physical Society

γ-rays following the β-decay of 62Ga and the strength of the superallowed transition J.R. LESLIE, I.S. TOWNER, Queen’s University, C. ANDREOIU, P.E. GARRETT, B.H. HYLAND, A.A. PHILLIPS, M.A. SCHUMAKER, C.E. SVENSSON, J.J. VALIENTE-DOBIN, University of Guelph, A. ANDREYEV, G.C. BALL, P. BRICAULT, M. DOMBSKY, G. HACKMAN, D. MELCONIAN, A.C. MORTON, C.J. PEARSON, TRIUMF, D. CROSS, Simon Fraser University, J.A. BECKER, LLNL — As part of an ongoing study of superallowed β-decay at TRIUMF, we have measured the intensity and energy of γ-rays following the β-decay of 62Ga. During a beam on period of 10 s., a total of approximately 3×10^8 atoms of 62Ga, from the Resonant Laser Ionisation Source at the ISAC facility, was implanted into a collector tape at the centre of the SCEPTAR/8π arrays. Before and after the beam on period, 2 s. of data were taken to assess backgrounds and the build up of long-lived activities. After each counting cycle the tape was moved in order to transport the implanted atoms to a shielded location. Substantial reduction in the Bremsstrahlung induced background were achieved by vetoing events in which the β-rays and γ-rays were observed in corresponding detectors. Singles β and coincident β-γ events were recorded. The intensities of β-rays feeding of low lying states in 62Zn and a γ-decay scheme of 62Zn are proposed. The data are compared to shell model predictions of energies and transition strengths. Predictions of charge dependent effects are tested against the deduced superallowed transition probability.

J.R. Leslie
Queen’s University

Date submitted: 18 Aug 2005