Abstract Submitted for the HAW05 Meeting of The American Physical Society

Measuring the lifetime of the muon to 1 ppm with MuLan at **PSI¹** DAVID HERTZOG, University of Illinois at Urbana-Champaign, MULAN COLLABORATION — The MuLan collaboration¹ will measure the positive muon lifetime to 1 ppm. This precision will determine the Fermi coupling constant G_F , which sets the strength of the weak interaction, to 0.5 ppm. In addition to its fundamental connection to the structure of the standard model, the μ^+ lifetime is needed as a normalization for muon capture experiments. A \pm 12.5 kV electric kicker is used to impose a pulsed structure on the continuous muon beam at the Paul Scherrer Institute, with a bunch of ~ 50 muons arriving within a 5 μ s beamon time followed by a 22 μ s beam-off measuring period. Muons are stopped in a depolarizing target, either amorphous sulfur or Arnokrone-3, to reduce the effects of spin rotation; an external magnetic field is applied to dephase the muons over the accumulation time. A scintillator hodoscope with 170 tile pairs arranged in a truncated icosohedral ("soccer ball") geometry provides a high level of segmentation to minimize pulse pileup. Similarly, new waveform digitizers will resolve pulses at separations of 4 ns. A dataset is in hand that should provide an initial result with 7 to 10 ppm precision, a factor of ~ 2 better than the current world average, and major production running is scheduled in 2005 and 2006. MuLan is supported by the National Science Foundation and the Department of Energy¹ U.C. Berkeley -Boston U. - U. Illinois - Istanbul Tech. U. - James Madison U. - U. Kentucky - KVI - PSI

¹for the MuLan Collaboration

David Hertzog University of Illinois at Urbana-Champaign

Date submitted: 24 May 2005

Electronic form version 1.4