HAW05-2005-000387

Abstract for an Invited Paper for the HAW05 Meeting of the American Physical Society

Newly synthesized an isotope of the 113th element

KOSUKE MORITA, RIKEN (The Institute of Physical and Chemical Research)

The convincing candidate event of the isotope of the 113th element, were observed, for the first time, in the 209 Bi + 70 Zn reaction at a beam energy of 349.0 MeV with a total dose of 1.7×10^{19} . Alpha decay energies and decay times of the candidates, 278 113, 274 111, and 270 Mt, were (11.68 \pm 0.04 MeV, 0.344 ms), (11.15 \pm 0.07 MeV, 9.26 ms), and (10.03 \pm 0.07 MeV, 7.16 ms), respectively. The production cross section of the isotope was deduced to be 55^{+150}_{-45} fb (10^{-39} cm²) [1]. The experiment was performed at RIKEN (The Institute of Physical and Chemical Research) Linear Accelerator (RILAC) Facility. The evaporation residues produced by the fusion reaction with a 70 Zn beam provided by the RILAC and the bismuth targets, were separated by a gas-filled recoil separator (GARIS) from the beam particles and the target recoils, and were collected at the focus of GARIS. We observed an event of implantation of an evaporation residue in the position-sensitive semiconductor detector followed by four consecutive alpha decays terminated by a spontaneous fission decay. Assignment of the event was based on genetic correlation of sequential alpha decays to the already known nuclides 266 Bh and 262 Db. The fourth alpha decay and the following spontaneous fission decay were assigned to be the decays of 266 Bh and 262 Db, respectively because of agreements of decay energies and decay times with the reported values [2]. As a consequence, the preceding three alpha decays were assigned to be ones of 278 113, 274 111, and 270 Mt.

- [1] K. Morita, K. Morimoto, D. Kaji, T. Akiyama et al., J. Phys. Soc. Jpn. 73 (2004) 2593.
- [2] P. A. Wilk et al., Phys. Rev. Lett. 85 (2000) 2697.