Abstract Submitted for the HAW05 Meeting of The American Physical Society

Strength of the Σ mean field deduced from SCDW model analyses of (π^-, K^+) inclusive spectra on 12 C, 28 Si, 58 Ni and 209 Bi 1 M. KOHNO, Kyushu Dental College, Y. FUJIWARA, Kyoto Univ., Y. WATANABE, K. OGATA, M. KAWAI, Kyushu Univ — The semiclassical distorted wave model is developed to analyze (π^-, K^+) Σ formation inclusive spectra on various nuclear targets. We do not introduce a factorization approximation in terms of Fermi averaging of the elementary cross sections in nuclear medium. Confirming first that the model works well for the (π^+, K^+) Λ formation inclusive spectra, we apply it to the Σ case. The shape and magnitude of the experimental spectra for various target nuclei taken at KEK [P.K. Saha *et al.*, Phys. Rev. C70, 044613 (2004)] are satisfactorily reproduced using a repulsive Σ -nucleus single-particle potential whose strength is of the order of $30{\sim}50$ MeV. The isovector part of the Σ single-particle potential is also determined from the data of heavier nuclei.

¹Supported by Grant-in-Aid for Scientific Research (C) from the Japan Society for the Promotion of Science, No. 15540284.

M. Kohno Kyushu Dental College

Date submitted: 24 May 2005 Electronic form version 1.4