Invariant-Mass Spectroscopy of 14Be with a Carbon Target at 68.1 AMeV

T. SUGIMOTO, T. NAKAMURA, M. MIURA, Y. KONDO, Tokyo Tech, N. FUKUDA, RIKEN, R301N COLLABORATION — We have studied the nuclear structure of 14Be using nuclear-breakup reaction with a carbon target at 68.1 AMeV. In the neighboring beryllium isotope 12Be, the disappearance of $N = 8$ magic number was suggested, which was shown by observations of the low-lying first 2^+ and the intruder 1^- state. On the other hand, no excited state has been observed for 14Be. It is thus interesting to study such low excited state in 14Be, in discussing the change of shell structure and the effect of neutron halo. The experiment was performed at the RIKEN Accelerator Research Facility. The secondary 14Be beam was produced and identified using RIPS beam line. The 14Be was broken up into 12Be and two neutrons by the carbon target. These decay particles were measured and identified using magnetic spectrometer and neutron detectors. The relative-energy spectrum of 12Be + 2n system was extracted using invariant-mass method. In the spectrum we found a narrow peak in the unbound region of 14Be. We also show the angular distribution of this transition in order to determine the spin/parity of the state.

Takashi Sugimoto
Tokyo Tech

Date submitted: 18 Aug 2005

Electronic form version 1.4