Four-body CDCC analysis of $^6\text{He}+^{209}\text{Bi}$ scattering near Coulomb barrier energies

TOMOAKI EGAMI, KAZUYUKI OGATA, TAKUMA MATSUMOTO, RIKEN, EMIKO HIYAMA, Department of Physics, Nara Women's University, YASUNORI ISERI, Department of Physics, Chiba-Keizai College, MASAYASU KAMIMURA, MASANOBU YAHIRO, Department of Physics, Kyushu University — In 2003, Keeley et al. analyzed the elastic scattering of ^6He on ^{209}Bi target at 19.0MeV and 22.5MeV by the continuum-discretized coupled-channels method (CDCC). In the analysis the $^2n+^4\text{He}+^{209}\text{Bi}$ three-body model, where 2n denotes dineutron, was adopted. This three-body CDCC analysis, however, failed to reproduce the experimental data of the elastic cross section of $^6\text{He}+^{209}\text{Bi}$.

In the present paper, $^6\text{He}+^{209}\text{Bi}$ system is described by $n+n+^4\text{He}+^{209}\text{Bi}$ four-body model and the four-body CDCC analysis, including nuclear- and Coulomb-breakup channels explicitly, is carried out. The three-body ($n+n+^4\text{He}$) continuum states of ^6He are discretized by the pseudostate method, i.e., pseudostates obtained by diagonalizing the internal Hamiltonian of ^6He with Gaussian basis functions are assumed to be discretized-continuum states of ^6He. We show that the four-body CDCC well reproduces the angular distribution of elastic scattering data and the total reaction cross section at the both incident energies.

Tomoaki Egami
Department of Physics, Kyushu University

Date submitted: 25 May 2005