Abstract Submitted for the HAW05 Meeting of The American Physical Society

Giant resonance study by ⁶Li scattering X. CHEN, Y.-W. LUI, H.L. CLARK, Y. TOKIMOTO, D.H. YOUNGBLOOD, Texas A&M University — The compressibility of nuclear matter K_{nm} can be related to the energies of the isoscalar giant monopole resonance (ISGMR). Essentially all of the precise data on the IS-GMR energies have been obtained with inelastic α scattering. Dennert et al[1] have successfully studied the ISGMR in ²⁴Mg with ⁶Li scattering, and we have chosen to study ⁶Li scattering as an alternate means of obtaining these energies. A ⁶Li target might also be viable for studying the ISGMR in unstable nuclei. A beam of 240MeV ⁶Li ions from the Texas A&M University K500 superconducting cyclotron bombarded self-supporting target foils of ²⁴Mg, ²⁸Si, ¹¹⁶Sn in the target chamber of the multipole-dipole-multipole(MDM) spectrometer. Elastic scattering from $5^0 \sim 35^0$ and inelastic scattering from $0^0 \sim 6^0$ deg were measured. Both Woods-Saxon phenomenological potentials and N-N effective M3Y interaction folded potentials have been used to fit the elastic scattering data from ¹¹⁶Sn. ⁶Li inelastic scattering to low-lying states and the giant resonance region of ¹¹⁶Sn was analyzed by both the deformed potential model and folded potential model. [1] H. Dennert et al, Phys. Rev. C 52, 3195 (1995)

> Dave Youngblood Texas A&M University

Date submitted: 26 May 2005

Electronic form version 1.4