Double-Polarization Experiments Using Polarized HD at LEGS.1

C. STEVEN WHISNANT, James Madison University, LEGS COLLABORATION
— A novel, solid, frozen-spin HD target has been developed for measurements of double-polarization observables in the \(\Delta \) resonance region. Our focus is the determination of the pion photo-production amplitudes for the neutron and proton. Cross sections, beam asymmetries and the \(E \) and \(G \) double-polarization observables are measured simultaneously. \(E \) provides information on the GDH and Spin-Polarizability spin sum rule integrals. We report here a preliminary analysis of one month of data collected on a \(\vec{H}\vec{D} \) target with polarizations of \(< P_H > = 30.0\% \) and \(< P_D > = 31.5\% \) and in-beam spin relaxation times of about one year. The photon beam energies ranged from 190 - 422 MeV with circular polarizations between 59\% and 100\%. Data collected during this run period focused on \(\pi^0 \) production from the neutron using a detector system optimized to detect the recoil neutron in coincidence with the \(\pi^0 \). This work is supported by the U.S. Department of Energy under contract DE-AC02-98CH10886, by the U.S. National Science Foundation, and by the Instituto Nazionale de Fisica Nucleare, Italy.

1C. Steven Whisnant for the LEGS-Spin Collaboration.