Solid State Ultra-Cold Neutron Detectors

SETH HOEDL, University of Washington, ADAM HOLLEY, North Carolina State University, ALEJANDRO GARCIA, University of Washington, PETER GELTENBORT, Institut Laue-Langevin, DAN MELCONIAN, University of Washington, ANNE SALLASKA, University of Washington, SKY SJUE, University of Washington, ALBERT YOUNG, North Carolina State University, UCNA COLLABORATION — The reflective properties of Ultra-Cold Neutrons (UCN) enable easy transport and bottling, but, make neutron detection a technical challenge. Typically, UCN are allowed to accelerate in the Earth’s gravitational field to sufficient velocity to penetrate an aluminum entrance window of a 3He proportional counter. Here we describe the construction and characterization at the ILL of two kinds of prototype solid-state detectors which can be used to monitor the UCN density inside the UCNA spectrometer without gravitational acceleration, and perhaps more critically, without the danger of 3He leaks. The first type consists of 300 μg/cm2 of LiF (natural isotopic abundance) evaporated on ~1μm thick nickel foils. The second type consists of $\sim 10^{18}$ 10B ions implanted in a 2000Å thick vanadium layer, also evaporated onto nickel foils. We find that both types have a lower critical velocity than aluminum, and thus, outperform aluminum window proportional counters for in-situ density measurements.

Seth Hoedl
University of Washington

Date submitted: 25 May 2005
Electronic form version 1.4