A Polarized 3He Neutron Spin Filter for $n+p \rightarrow d+\gamma$1 TIM CHUPP,
University of Michigan FOCUS Center, NPDGAMMA COLLABORATION — The $n+p \rightarrow d+\gamma$ experiment uses a pulsed cold neutron beam to measure A_γ, the parity-violating correlation of neutron spin and the direction of gamma–ray emission upon capture of polarized neutrons by protons. A large area polarized 3He neutron spin filter has been constructed and used for measurements on the FP12 beam line at the Los Alamos Neutron Scattering Center. The spin–filter consists of roughly cylindrical cells 5 cm thick with 10–12.5 cm inside diameter, which covers most of the available neutron beam area. The cells, made at NIST, use boron free, alumino–silicate glass (GE-180) and are filled with about 1 atmosphere (at room temp.) of 3He, natural rubidium and N$_2$. Two broadband, 30 W laser diode arrays coupled to optical fibers irradiate the cell and polarize rubidium vapor. Polarization is transferred to 3He nuclei though spin-exchange collisions. The transmission of neutrons through the spin filter is used to measure the neutron polarization, and the 3He polarization is extracted from the wavelength dependence. Continuous 3He polarization greater than 50\% (\pm 2\%) has been maintained over the course of several weeks. A 3He analyzer cell, polarized off-line can be positioned down stream from the experiment to monitor neutron polarization and spin flipping. Cell construction, polarizer design, performance, and polarimetry will be described in this talk.

1Supported by DOE and NSF

Tim Chupp
University of Michigan FOCUS Center

Date submitted: 25 May 2005

Electronic form version 1.4