Measurements with 7Be beams at the HRIBF

D.W. BARDAYAN, J.C. BLACKMON, J.J. DAS, C.D. NESARAJA, M.S. SMITH, D.W. STRACENER, ORNL, K.Y. CHAE, Z. MA, U. Tenn., A.E. CHAMPAGNE, R. FITZGERALD, D.W. VISSER, UNC, U. GREIFE, R.J. LIVESAY, Colorado School of Mines, V. GUIMARAES, U. Sao Paulo, J. HOWARD, R.L. KOZUB, Tenn. Tech. U., M.S. JOHNSON, ORAU, K.L. JONES, S.D. PAIN, J.S. THOMAS, Rutgers, P.D. PARKER, Yale — A 7Be beam has been used at the HRIBF to study important reactions in stellar burning. Precise knowledge of the 7Be(p, γ)8B rate is important for interpreting solar neutrino flux observations. A direct measurement of the 7Be(p, γ)8B cross section is being made by bombarding a 2H gas target with a 7Be beam and counting 8B recoils at the focal plane of the DRS mass spectrometer. The 3He(3He,2p)4He reaction also occurs in stellar burning, but interpretation of low energy measurements have been hindered by a surprisingly strong low-energy rise in the cross section. This rise could, in part, be due to broad 6Be resonances. We have studied 2H(7Be,t)6Be to search for any such broad 6Be levels. Initial results from these measurements will be presented.

1ORNL is managed by UT-Battelle, LLC for the U.S. DOE under Contract No. DE-AC05-00OR22725.

D.W. Bardayan
ORNL

Date submitted: 25 May 2005

Electronic form version 1.4