A new prediction for the binding energy of $^7\Lambda$He hypernucleus

VLADIMIR SUSLOV, IGOR FILIKHIN, BRANISLAV VLAHOVIC, North Carolina Central University — P-shell A=7 hypernuclei are considered in the cluster $^7\Lambda$He+N+N model. The folding procedure using the OBE simulating (NSC97f) model for ΛN potential and various $\alpha\Lambda$ potentials are applied to construct the $^7\Lambda$He-N interaction. Configuration space Faddeev calculations are performed for hyperon binding energy of the $^7\Lambda$He ($\frac{1}{2}^+$) and $^7\Lambda$Li ($\frac{1}{2}^+$ and $\frac{3}{2}^+$, T=0) hypernuclei. A new predicted value for $B_\Lambda(^7\Lambda$He) is 5.35 MeV. This value was obtained for the $^6\Lambda$He(2$^-$) excitation energy equal to 0.26 MeV. Since the 2$^-$ state of $^6\Lambda$He has not yet been observed, the $^6\Lambda$He(2$^-$) excitation energy was chosen to reproduce the experimental value of the $^7\Lambda$Li($\frac{3}{2}^+$) excitation energy by the adjustment of the $^6\Lambda$He-N effective potential. Our results are compared with those from [1].

Branislav Vlahovic
North Carolina Central University

Date submitted: 31 May 2005

Electronic form version 1.4