> Abstract Submitted
> for the HAW05 Meeting of The American Physical Society

Abstract

Delayed nucleon alignment and search for prolate-to-oblate shape transition in ${ }^{180} \mathbf{H f}$ at high spins* U.S. TANDEL, P. CHOWDHURY, S.K. TANDEL, S. SHEPPARD, U. Massachusetts Lowell, D. CLINE, C.Y. WU, U. Rochester, M.P. CARPENTER, R.V.F. JANSSENS, T.L. KHOO, T. LAURITSEN, C.J. LISTER, D. SEWERYNIAK, S. ZHU, Argonne Natl. Lab. - Early calculations predict a giant backbend in ${ }^{180} \mathrm{Hf}$ at $\mathrm{I} \approx 26 \hbar$ due to a crossing of two bands with different intrinsic shapes [1]. More recent cranking calculations [2,3] predict that oblate collective rotational states coexist with prolate ones in neutron-rich Hf nuclei, with the oblate becoming yrast at higher spins. The first nucleon alignment in ${ }^{180} \mathrm{Hf}$, predicted at $\hbar \omega \approx 0.35 \mathrm{MeV}$, was not observed in recent studies up to the $\hbar \omega \approx 0.43 \mathrm{MeV}[3]$. In the present work, high spin states in ${ }^{180} \mathrm{Hf}$ were populated by inelastic excitation, with a $1300 \mathrm{MeV}{ }^{180} \mathrm{Hf}$ beam from the ATLAS accelerator at Argonne incident on a thin ${ }^{232} \mathrm{Th}$ target. The recoiling beam- and target-like nuclei were identified using the position-sensitive detector CHICO, which allowed event-by-event Doppler correction for the γ-rays emitted in flight by the recoiling nuclei and detected with the Gammasphere array. The extended level scheme of ${ }^{180} \mathrm{Hf}$ will be discussed in the context of the predicted alignments and shape changes. [1] R.R. Hilton and H.J. Mang, Phys. Rev. Lett. 43, 1979 (1979). [2] F.R. Xu et al., Phys. Rev. C62, 014301 (2000). [3] E. Ngijoi-Yogo, Ph.D. thesis, U.Mass. Lowell (2004) *Supported by US Department of Energy Grants DE-FG02-94ER40848, W-31-109-ENG-38 and the National Science Foundation.

P. Chowdhury
U. Massachusetts Lowell

