Abstract Submitted for the HAW05 Meeting of The American Physical Society

 α -stripping reactions with light exotic nuclei: ${}^{12}C({}^{7}Be, {}^{3}He){}^{16}O$ H. AMRO, F.D. BECCHETTI, H. JIANG, H. GRIFFIN, Y. CHEN, University of Michigan, J.J. KOLATA, B. SKORODUMOV, University of Notre Dame, J.D. HINNEFELD, Indiana University South Bend, G. PEASLEE, Hope College — Considerable experimental and theoretical efforts have been devoted to examine the importance of α -particle clustering in *p*-shell and *sd*-shell nuclei which is essential for the analysis of the helium- and silicon-burning processes in nuclear astrophysics. α -stripping reactions such as $({}^{6}Li, d)$ and $({}^{7}Li, t)$ were used to prope the α structure of ¹⁶O. These studies shown that the $(^{7}Li, t)$ reaction is significantly more sellective than $({}^{6}Li, d)$ reaction. New reaction, $({}^{7}Be, {}^{3}He)$ has been studied at $E({}^{7}Be)=34$ MeV using the University of Michigan-University of Notre Dame radiactive nuclear beam facility. Angular distributions have been measured for several states in ¹⁶O. At this energy, this reaction exhibits a high selectivity for populating α -cluster states in ¹⁶O. Furthermore, ³He-stripping reaction (⁷Be, α) populating several states in ¹⁵O, never been reported befor for $(^{7}Li, t)$ or $(^{6}Li, d)$ reactions, was observed in our data. Experimental and theoretical analysis of this data will be presented.

> W. Tan University of Notre Dame

Date submitted: 26 May 2005

Electronic form version 1.4