α-stripping reactions with light exotic nuclei: $^{12}\text{C}(^{7}\text{Be},^{3}\text{He})^{16}\text{O}$

H. AMRO, F.D. BECCHETTI, H. JIANG, H. GRIFFIN, Y. CHEN, University of Michigan, J.J. KOLATA, B. SKORODUMOV, University of Notre Dame, J.D. HINNEFELD, Indiana University South Bend, G. PEASLEE, Hope College — Considerable experimental and theoretical efforts have been devoted to examine the importance of α-particle clustering in p-shell and sd-shell nuclei which is essential for the analysis of the helium- and silicon-burning processes in nuclear astrophysics. α-stripping reactions such as ($^{6}\text{Li}, d$) and ($^{7}\text{Li}, t$) were used to probe the α structure of ^{16}O. These studies shown that the ($^{7}\text{Li}, t$) reaction is significantly more selective than ($^{6}\text{Li}, d$) reaction. New reaction, ($^{7}\text{Be},^{3}\text{He}$) has been studied at $E(^{7}\text{Be})=34$ MeV using the University of Michigan-University of Notre Dame radioactive nuclear beam facility. Angular distributions have been measured for several states in ^{16}O. At this energy, this reaction exhibits a high selectivity for populating α-cluster states in ^{16}O. Furthermore, ^{3}He-stripping reaction ($^{7}\text{Be}, \alpha$) populating several states in ^{15}O, never been reported before for ($^{7}\text{Li}, t$) or ($^{6}\text{Li}, d$) reactions, was observed in our data. Experimental and theoretical analysis of this data will be presented.

W. Tan
University of Notre Dame

Date submitted: 26 May 2005
Electronic form version 1.4