Abstract Submitted for the HAW05 Meeting of The American Physical Society

Double-Beta Decay Studies of 100 Mo to Excited 0^+ States in 100 Ru 1 R.C. REMINGTON, Oglethorpe Univ., J.H. ESTERLINE, M.F. KIDD, W. TORNOW, Duke Univ. and TUNL — We are in the process of analyzing 1 kg x year of two-neutrino double-beta $(2\nu\beta\beta)$ decay data recently obtained at TUNL for 100 Mo. Transitions to excited 0^+ states in 100 Ru have half-life times which are at least one order of magnitude larger than those to the ground state of 100 Ru. Our experiment features a 1kg sample of 100 Mo placed between two HPGe detectors with a surrounding NaI annulus to veto background events. Passive shielding and coincidence techniques were used to minimize BG events. As the 100 Mo nucleus double-beta decays to the first excited 0^+ 100 Ru*, two gamma rays of 590.8 keV and 539.5 keV are subsequently emitted and detected in coincidence in our two HPGe detectors. We identified 15 $(2\nu\beta\beta)$ events for this transition, therefore, improving the statistical accuracy of the previously reported results of $T_{1/2} = 5.9^{+1.7}_{-1.1} x 10^{20}$ yrs of DeBraekeleer et al². We also give improved limits on $T_{1/2}$ for the transitions to the 2^{nd} and 3^{rd} excited 0^+ states in 100 Ru.

Referenced: L. DeBraekeleer et al., Phys. Rev. Lett. 86, 3510 (2001)

 $^1\mathrm{Supported}$ in part by DOE grant # DE-FG02-97ER41033 and by NSF grant # NSF-PHY-02-43776

R.C. Remington Oglethorpe Univ.

Date submitted: 18 Aug 2005 Electronic form version 1.4