Abstract Submitted for the HAW05 Meeting of The American Physical Society

Two-neutron transfer in the ⁶He + ²⁰⁹Bi reaction near the Coulomb barrier PATRICK J. MEARS, Hope College, P.A. DEYOUNG, G F. PEASLEE, Hope College, J.J. KOLATA, University of Notre Dame, E.F. AGUIL-ERA, Instituto Nacional de Investigaciones Nucleares, F.D. BECCHETTI, University of Michigan — The cross section for α -particle emission in the ⁶He + ²⁰⁹Bi reaction at energies near the Coulomb barrier is remarkably large. Possible reactions that may produce the observed α -particles include two-neutron transfer, oneneutron transfer, and direct projectile breakup. Each of these mechanisms results in a distinctive angular correlation between the α particle and the outgoing neutron(s). A neutron- α -particle coincidence experiment was performed to study two-neutron transfer to unbound states of ²¹¹Bi. It is shown that approximately 55% of the observed α -particle yield at and beyond the grazing angle is due to this process. This is more than 2.5 times the fraction attributable to single-neutron transfer. This work has been published: Phys. Rev. C 71, 051601 (R) (2005)

> Patrick J. Mears Hope College

Date submitted: 01 Jul 2005

Electronic form version 1.4