Abstract Submitted for the HAW05 Meeting of The American Physical Society

 ϕ meson production in Deuteron-Gold Collisions at $\sqrt{s} = 200$ GeV at PHENIX SUNGHO YOON, University of Illinois at Urbana Champaign, PHENIX COLLABORATION — Surprising nuclear effects from J/ψ and light meson productions at forward rapidity region have been observed in d+Au collisions at $\sqrt{s} = 200 \text{GeV}$ in PHENIX using the forward muon spectrometers. The J/ψ signals were reconstructed through the dimuon decay channel, and the light mesons (π, K) were detected through their decays to muons as well as through the 'punch-through' hadrons. To understand the origin for the nuclear effects, it would be very useful to detect the ϕ meson which contains a pair of strange and anti-strange quarks. The measurement of ϕ production at PHENIX will also help us to understand the nuclear effects as a function of the mass of the produced hadrons. The ϕ production could be measured via $\phi \to \mu^+ \mu^-$ decay channel using the muon spectrometers at PHENIX. However, the current trigger system is optimized for the measurement of J/ψ . An improvement to the trigger system will allow the study of ϕ production. We have calculated the production of ϕ in the d+Au reaction at $\sqrt{s} = 200$ GeV. The acceptance of the PHENIX detector for the ϕ events, and the kinematic coverage and the anticipated statistical accuracy for the accepted ϕ events have also been studied. In this talk, we present the results of this study.

> Sungho Yoon University of Illinois at Urbana Champaign

Date submitted: 05 Jul 2005

Electronic form version 1.4