Abstract Submitted for the HAW09 Meeting of The American Physical Society

Feeding of the 1⁻ isomer in ¹⁷⁶Lu in neutron induced reactions N. FOTIADES, M. DEVLIN, R.O. NELSON, LANL — The $(n, n'\gamma)$ reaction was used to measure γ -ray excitation functions in 175,176 Lu with a nat Lu target. The data were taken using the GEANIE spectrometer comprised of 26 Ge detectors. The pulsed neutron source of the LANSCE/WNR facility provided neutrons with incident energies from 1 to 300 MeV, determined using the time-of-flight technique. The excitation functions for 111 γ -rays from several reaction channels were determined, among them two transitions feeding directly the 1⁻, 3.664h isomer, and one transition feeding directly the $7^-, 3.76 \times 10^{10} y$ ground state in $^{176} \text{Lu}$. Both states β -decay to ¹⁷⁶Hf. The Lu-Hf radioactive decay system, with a half-life of \sim 37 billion years from the ground state, is a chronometer for dynamic processes on a stellar time scale. Recent anomalies have questioned the accuracy of this chronometer, one possible explanation being that astrophysical (n, n') reactions populate the 1⁻ isomer and reduce the effective half-life of ¹⁷⁶Lu. The excitation functions for the three ¹⁷⁶Lu transitions from the present experiment can be compared to nuclear reaction model calculations that predict the 176g Lu $(n, n'\gamma)^{176m}$ Lu cross section, thus providing an important check for such models. Attempts to improve the experimental results to obtain absolute partial γ -ray cross sections for more γ -rays feeding the isomer and ground state of ¹⁷⁶Lu in future GEANIE experiments will be discussed. This work was supported by U.S. DOE DE-AC52-06NA25396.

> Ronald Nelson LANL

Date submitted: 18 Jun 2009 Electronic form version 1.4