Abstract Submitted for the HAW09 Meeting of The American Physical Society

Universal Correlations in "Pion-less" Effective Field Theory: 3, 4 and 6 Nucleons¹ HARALD W. GRIESSHAMMER, JOHANNES KIRSCHER, DEEPSHIKHA SHUKLA, Center for Nuclear Studies, George Washington University, HARTMUT M. HOFMANN, University Erlangen-Nuernberg — In a feasibility study for chiral EFT and heavier systems, we analyse bound and scattering properties of 3-, 4- and 6-nucleon systems in the Effective Field Theory "without pions" at next-to-leading order using the Refined Renormalisation Group Method with full Coulomb treatment, with 3N-interactions, phase-equivalent potentials and a range of cut-offs for convergence checks. For correlations between the triton binding energy B_{3H} , its charge radius and the binding energy of ⁴He, convergence is consistent with an expansion parameter $\approx \frac{1}{3}$. No 4N-interaction is needed for renormalisation. With the correlation between B_{3H} and the ³He binding energy iso-spin symmetric at NLO, the model-independent difference at the physical B_{3H} , $[0.10 \pm 0.03]$ MeV, is the same both in magnitude and uncertainty as estimates from charge-symmetry breaking. In the first scattering calculation for $A \ge 4$, we found a correlation between B_{3H} and the real part of the singlet scattering length of ³He-n scattering similar to the Tjon line. Finally, we address convergence of "pion-less" EFT in the halo nucleus ⁶He.

¹Supported in part by NSF CAREER-grant PHY-0645498 and DOE grant DE-FG02-95ER-40907.

Harald W. Griesshammer CNS, George Washington University

Date submitted: 22 Jun 2009

Electronic form version 1.4