Abstract Submitted for the HAW09 Meeting of The American Physical Society

Study of the ¹⁵⁰Sm(t,³He) and ¹⁵⁰Nd(³He,t) reactions with applications for the $0\nu\beta\beta$ decay of ¹⁵⁰Nd¹ CAROL GUESS, NSCL/MSU, NSCL, MSU/RCNP, OSAKA UNIV./UNIV. OF MUENSTER CHARGE-EXCHANGE AND DOUBLE BETA DECAY COLLABORATION — The NSCL charge-exchange group has ongoing programs to measure the spin-isospin response of nuclei. This talk will focus on measurements of the ¹⁵⁰Sm(t,³He)¹⁵⁰Pm* and ¹⁵⁰Nd(³He,t)¹⁵⁰Pm* reactions, which are essential for studies of the neutrinoless double beta ($0\nu\beta\beta$) decay of ¹⁵⁰Nd. ¹⁵⁰Nd is one of the main candidates for $0\nu\beta\beta$ decay detection experiments. To design detectors for $0\nu\beta\beta$ decay and to extract information about the neutrino mass scale and hierarchy from resulting experimental data, accurate nuclear matrix elements are needed. Nuclear charge-exchange experiments can constrain theories used to predict these matrix elements by providing Gamow-Teller and higher order multipole transition strengths in the virtual intermediate nucleus. In addition to its applications for $0\nu\beta\beta$ decay, investigation of the spin-isospin response of heavy, deformed nuclei is important for future work on rare isotopes.

¹This work was supported by the US NSF (PHY-0606007 and PHY-0822648).

Carol Guess NSCL/MSU

Date submitted: 26 Jun 2009

Electronic form version 1.4