Abstract Submitted for the HAW09 Meeting of The American Physical Society

Effects of $\Lambda(1405)$ on the Structure of Multi-Antikaonic Nuclei TAKUMI MUTO, Department of Physics, Chiba Institute of Technology, TOSHIKI MARUYAMA, Advanced Science Research Center, Japan Atomic Energy Agency, TOSHITAKA TATSUMI, Department of Physics, Kyoto University — Multi-strangeness system in hadronic matter has received much attention toward understanding high-density QCD. Recently deeply bound antikaonic nuclear states have been studied extensively. We have investigated multi-antikaonic nuclei (MKN), where several K^- mesons are bound in the nucleus. In this paper, we extend our framework to take into account the $\Lambda(1405)$ (Λ^*) and consider its effects on the structure of the MKN. We base our study on the relativistic mean-field theory (RMF), coupled with \bar{K} -nucleon (N) and $\bar{K}-\bar{K}$ interactions which respect chiral symmetry. The Λ^* is introduced as a pole contribution to the energy together with the range effects as the second-order perturbation with respect to the relevant axial-vector current. The density profiles of the nucleons and K^- for the MKN are obtained. It is shown that the I=0 KN attraction is enhanced as a result of avoiding the Λ^* pole. Therefore both protons and K^- mesons become denser around the center of the MKN as compared with the previous result without the range terms and Λ^* . We also discuss behavior of the binding energy of the MKN by systematically changing the number of the embedded K^- , |S|.

> Takumi Muto Department of Physics, Chiba Institute of Technology

Date submitted: 14 Jul 2009 Electronic form version 1.4