Abstract Submitted for the HAW09 Meeting of The American Physical Society Alpha-gamma coincidence spectroscopy of ²⁵⁹Rf using a mixed Cf target MASATO ASAI, KAZUAKI TSUKADA, YOSHITAKA KASAMATSU, TETSUYA K. SATO, ATSUSHI TOYOSHIMA, YASUO ISHII, RYUTA TAKA-HASHI, YUICHIRO NAGAME, TETSURO ISHII, ICHIRO NISHINAKA, Japan Atomic Energy Agency, DAIYA KAJI, KOUJI MORIMOTO, RIKEN, YASUAKI KOJIMA, Hiroshima University — Gamma rays following the α decay of 259 Rf have been observed for the first time by means of α - γ coincidence spectroscopy. ²⁵⁹Rf was produced via the ²⁵¹Cf(¹²C,4n)²⁵⁹Rf reaction at the JAEA tandem accelerator. The target consists of 63% ²⁴⁹Cf, 12% ²⁵⁰Cf, and 25% ²⁵¹Cf with a thickness of $420 \mu \text{g/cm}^2$. Reaction products were transported with a He/KCl aerosol jet into a rotating wheel α - γ detection system equipped with two sets of two Si detectors and two Ge detectors. Two γ lines were observed at 97.3 and 146.7 keV in coincidence with the 8770 keV α transition of 259 Rf. In addition, a few γ events appeared at \sim 125 keV. The energy differences and intensities of these γ transitions, which are very similar to those in the α decay of ²⁵⁷No, allow us to assign the $3/2^+$ [622] configuration to the 146.7 keV level in ²⁵⁵No as well as to the ground state of ²⁵⁹Rf. This result indicates that the order of neutron orbitals should be inverted between 255 Fm and 257 No in N = 155 isotones. > Masato Asai Japan Atomic Energy Agency Date submitted: 24 Aug 2009 Electronic form version 1.4