Abstract Submitted for the HAW09 Meeting of The American Physical Society

Structure of the neutron-rich isotope ¹³B with N = 8 studied via lifetime measurements with low-energy fusion reactions HIRONORI IWASAKI, ALFRED DEWALD, CHRISTOPH FRANSEN, ADRIAN GELBERG, MATTHIAS HACKSTEIN, JAN JOLIE, THOMAS PISSULLA, WOLFRAM ROTHER, KARL-OSKAR ZELL, IKP, University of Cologne, Germany, PAVEL PETKOV, Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria — We report recent experimental studies on the structure of the neutron-rich isotope ¹³B with N = 8 performed at the FN Tandem facility of the University of Cologne [1]. The lifetime measurements of the excited states in ¹³B were performed by the Doppler-shift attenuation method with the $^{7}\text{Li}(^{7}\text{Li},p)^{13}\text{B}$ reaction at a beam energy of 5.4 MeV. To select the reaction channel unambiguously, and hence reduce the background considerably, the particle- γ coincidence was employed. An anomalously long mean lifetime of 1.3(3) ps was found for the excited state at 3.53 MeV in 13 B. The hindered transition strengths between the ground and 3.53-MeV states clearly indicate significant intruder configurations for the excited state. The data are well explained by recent shell model calculations which suggest $J^{\pi} = 3/2^{-}$ for the 3.53-MeV state with the dominant intruder $(\nu 2p2h)$ configuration, pointing to the fading effects of the N = 8 shell closure. The occurrence of the intruder configurations in the N = 8 isotones will be discussed. [1] H. Iwasaki *et al.*, Phys. Rev. Lett. **102**, 202502 (2009).

> Hironori Iwasaki IKP, University of Cologne, Germany

Date submitted: 30 Jun 2009

Electronic form version 1.4