Investigation of the $^{30}\text{S}(p, \gamma)^{31}\text{Cl}$ reaction via Coulomb dissociation

YASUHIRO TOGANO, RIKEN Nishina Center, RNC R403N COLLABORATION — The Stellar reaction $^{30}\text{S}(p, \gamma)^{31}\text{Cl}$ was studied via Coulomb dissociation. The nucleus ^{30}S is a candidate for the waiting point, which the reaction flow temporarily stops at this nuclei, in the rapid proton capture (rp) process. The $^{30}\text{S}(p, \gamma)^{31}\text{Cl}$ reaction decreases the amount of ^{30}S, and thus speeds the reaction flow of the rp process up. Therefore the strength of this reaction affects the resultant abundance and energy production in the rp process. No direct measurement of the $^{30}\text{S}(p, \gamma)^{31}\text{Cl}$ reaction has been made so far. The aim of the present work is to determine the resonant capture reaction rate of $^{30}\text{S}(p, \gamma)^{31}\text{Cl}$ from the result of Coulomb dissociation of ^{31}Cl. The experiment was performed at the RIKEN Nishina Center. The secondary beam of ^{31}Cl at 58 MeV/nucleon was produced and separated using the RIKEN Projectile Fragment Separator (RIPS). The beam of ^{31}Cl bombarded a ^{208}Pb target. The momentum vectors of the breakup products, the isotopes ^{30}S and protons, were determined using the detectors located at downstream of the target. The relative energy spectrum of $^{30}\text{S} + p$ system was extracted using invariant-mass method. In this presentation, we discuss the unbound state of ^{31}Cl which is relevant to the resonant capture in the $^{30}\text{S}(p, \gamma)^{31}\text{Cl}$ reaction.

Yasuhiro Togano
RIKEN Nishina Center

Date submitted: 30 Jun 2009