HAW09-2009-000362

Abstract for an Invited Paper for the HAW09 Meeting of the American Physical Society

Meson Properties at Finite Density CHADEN DJALALI, University of South Carolina

Quantum Chromodynamics (QCD), the theory of the strong interaction, has been remarkably successful in describing highenergy and short-distance-scale experiments involving quarks and gluons. However, applying QCD to low energy and largedistance-scale experiments has been a major challenge. The symmetries of QCD (such as Chiral Symmetry) provide guiding principles to deal with strong interaction phenomena in the non-perturbative domain. Various QCD-inspired models predict a modification of the properties of hadrons in nuclear matter from their free-space values. A review of experiments searching for the in-medium modifications of light mesons will be given trying to assess if they confirm or refute these theoretical predictions. The majority of experiments both with relativistic heavy-ion reactions as well as with elementary reactions observe a substantial broadening of the width of light vector mesons inside the nuclear medium, with no evidence of a mass shift. Several complementary high statistics experiments are planned at JLab, GSI, JPARC and RHIC to further study the properties of mesons in the medium.