Abstract Submitted for the HAW09 Meeting of The American Physical Society

Direct and Indirect Techniques for Determining Reaction Rates ERIC JOHNSON, Florida State University, ANASEN COLLABORATION — Astrophysically important reactions have been studied through indirect techniques for many years due to their prohibitively small cross sections at Gamow window energies. Indirect techniques, such as α -transfer reactions, constrain the reaction cross section of interest in the astrophysically relevant energy range. Recently, we determined the contribution of the 3^- state at 6.4 MeV in ¹⁸O to the ¹⁴C(α, γ) reaction rate through the indirect α -transfer reaction ${}^{14}C({}^{7}Li,t)$ at the John D. Fox Superconducting Accelerator Laboratory at FSU. Using the same experimental data we were able to determine the asymptotic normalization coefficient (ANC) of the $1^$ state at 6.2 MeV in ¹⁸O. This state is a mirror of the 6.15 MeV state in ¹⁸Ne, which dominates the ¹⁴O(α ,p) reaction rate at temperatures of Novae and X-ray bursters. An experimental apparatus which will allow for direct measurements of the astrophysically important (α, p) reaction rates in the Gamow window, the LSU-FSU Array for Nuclear Astrophysics Studies with Exotic Nuclei (ANASEN), is now under construction. I will discuss our recent results on the ${}^{14}C(\alpha,\gamma)$ and ${}^{14}O(\alpha,p)$ reaction rates and the current status of the ANASEN project.

> Eric Johnson Florida State University

Date submitted: 30 Jun 2009

Electronic form version 1.4