Abstract Submitted for the HAW09 Meeting of The American Physical Society

Very low energy protons from β -delayed p-decay of proton-rich nuclei for nuclear astrophysics¹ E. SIMMONS, L. TRACHE, A. BANU, J.C. HARDY, V.E. IACOB, M. MCCLESKEY, B. ROEDER, A. SPIRIDON, R.E. TRIBBLE, Texas A&M University, T. DAVINSON, G. LOTAY, P.J. WOODS, University of Edinburgh, UK, A. SAASTAMOINEN, J. AYSTO, University of Jyvaskyla, Finland — We developed a technique to measure very low energy protons from the beta-delayed proton-decay of proton-rich nuclei produced and separated with the MARS recoil separator at TAMU. A simple setup consisting of a telescope made of a thin double sided Si strip detector (p-detector) backed or sandwiched between two thick Si detectors (β -detectors) was designed. The source nuclei are slowed down from 30-40 MeV/u and implanted in the middle of the thin p-detector. The excited states populated in daughter nucleus above the proton threshold are resonances in the radiative proton capture leading to that nucleus; therefore, betadecay can be a useful mechanism to study these resonances. In particular, we have studied ²³Al and ³¹Cl and got information on the resonances of ²²Na(p, γ)²³Mg and $^{30}P(p,\gamma)^{31}S$ reactions, both important in novae. We studied different W1 and BB2 p-detectors, 45-140 μ m thick, made by MSL, and found that thinner detectors with a small cell size are best to measure proton energies as low as 2-300 keV.

¹Supported by US DOE.

Ellen Simmons Texas A&M University

Date submitted: 30 Jun 2009 Electronic form version 1.4