Abstract Submitted for the HAW09 Meeting of The American Physical Society

Properties of quadrupole-octupole coupled states in ¹¹⁶Cd from the $(n, n'\gamma)$ reaction C.S. SUMITHRARACHCHI, P.E. GARRETT, K.L. GREEN, Department of Physics, University of Guelph, M. KADI, Department of Chemistry and Physics & Astronomy, University of Kentucky, J. JOLIE, N. WARR, Institude of Nuclear Physics, University of Cologne, S.W. YATES, Department of Chemistry and Physics & Astronomy, University of Kentucky — Negative-parity levels in the 2.4 MeV region, arising from the coupling of the 2^+_1 quadrupole and 3^-_1 octupole states, have been investigated with the $(n, n'\gamma)$ reaction. The measured γ -ray excitation functions, γ - γ coincidences and angular distributions were utilized to characterize the decays of these states. The level lifetimes have been measured with the Doppler-shift attenuation method, and B(E1) and B(E2) values for the associated transitions have been determined. The enhanced B(E2) values for decay to the 3^- octupole state from many of the candidate negative-parity states were observed to be consistent with the expected signature of quadrupole-octupole coupled states. The properties of these states will be compared with the systematics of quadrupole-octupole coupled states in Cd isotopes and IBM calculations.

> Chandana Sumithrarachchi Department of Physics, University of Guelph

Date submitted: 30 Jun 2009

Electronic form version 1.4