Measurement of the $^{235}\text{U}(n,n')^{235}\text{mU}$ Integral Cross Section in a Pulsed Reactor

D.J. VIEIRA, E.M. BOND, Los Alamos National Laboratory, G. BELIER, V. MEOT, CEA/DAM DIF, J.A. BECKER, R.A. MACRI, Lawrence Livermore National Laboratory, N. AUTHIER, D. HYNECK, X. JACQUET, Y. JANSEN, J. LEGRENDRE, CEA/DAM Valduc — We will present the integral measurement of the neutron inelastic cross section of ^{235}U leading to the 26-minute, $E^*=76.5$ eV isomer state. Small samples (5-20 microgm) of isotope-enriched ^{235}U were activated in the central cavity of the CALIBAN pulsed reactor at Valduc where a nearly pure fission neutron spectrum is produced with a typical fluence of 3×10^{14} n/cm2. After 30 minutes the samples were removed from the reactor and counted in an electrostatic-deflecting electron spectrometer that was optimized for the detection of ^{235}mU conversion electrons. From the decay curve analysis of the data, the 26-minute ^{235}mU component was extracted. Preliminary results will be given and compared to gamma-cascade calculations assuming complete K-mixing or with no K-mixing.

1 This work was performed under the auspices of the U.S. DOE under contracts DE-AC52-07NA27344 and DE-AC52-06NA25396.