Abstract Submitted for the HAW09 Meeting of The American Physical Society

Spectroscopy of Short-Lived Fission Fragment Isomers¹ J.J. RESSLER, C.F. FRANCY, J.A. CAGGIANO, D.V. JORDAN, P. PEPLOWSKI, G.A. WARREN, Pacific Northwest National Laboratory, STARS+LIBERACE COLLABORATION — Fission is a well-known mechanism to populate excited states in neutron-rich isotopes. Fission is also an effective tool for studying isomeric decays, as they are often well-populated and relatively easy to detect. Isomeric states with half-lives in the ~ 5 – $100~\mu s$ range were examined using ⁶Li-induced fission on ²³²Th. A 45-MeV ⁶Li beam from the 88-Inch Cyclotron of LBNL was alternately blocked to provide beam on/off periods to populate and observe the isomeric decays. Fission fragments were tagged using a thin Si detector near the ²³²Th target, and coincident gamma rays were detected using six clover and one LEPS HPGe detectors of the LiBerACE array. Several isomers were identified in the A ~ 95 and A ~ 140 mass regions, as expected. Numerous isomers were also observed near A ~ 120 , due to the significant contribution from symmetric fission. Characteristics of the induced fission, with observed isomer populations and decays, will be discussed.

¹This work was performed under the auspices of the U.S. Department of Energy under contract numbers DE-AC05-76RLO-1830 (PNNL), DE-AC52-07NA27344 (LLNL), and DE-AC02-05CH11231 (LBNL).

Jennifer Jo Ressler Pacific Northwest National Laboratory

Date submitted: 04 Aug 2009 Electronic form version 1.4