Abstract Submitted for the HAW09 Meeting of The American Physical Society

Study of double- Λ Hypernuclei at J-PARC (E07) experiment KAZUMA NAKAZAWA, Gifu University, E07 (J-PARC) COLLABORATION — To study double strangeness system such as double- Λ hypernuclei and H-dibaryon, Hybrid-emulsion experiments with counter (E176) and scintillating-fiber (E373) have been performed for these twenty years. In the experiments, we have obtained nearly ten thousand events of Ξ^- hyperon capture at rest in nuclear emulsion, and observed 8 events of sequential decay of light double- Λ hypernuclei and 5 events of twin hypernuclei. Recently, we succeeded to measure two Λ binding energies of ${}^{6}_{\Lambda\Lambda}$ He, ${}^{11}_{\Lambda\Lambda}$ Be and ${}^{13}_{\Lambda\Lambda}$ B. However, very little is known for double-strangeness system. In this talk, we present a quite improved experiment (E07 at J-PARC) with ten times' statistics of the previous experiments. A new-generation hybrid-emulsion method is applied to search for double- Λ hypernuclei. In the experiment, we handle Double-sided Silicon Strip tracking Detector (DSSD) for precise detection of Ξ^- hyperon in the emulsion, and huge amount of emulsion gel (2.6 tons). We also develop speedy scanning system to complete scanning of $10^6 \Xi^-$ hyperons within a few years. It is expected that one million Ξ^- hyperons produce about 10^2 double- Λ hypernuclear events in the emulsion. We will make a nuclear chart with double strangeness.

> Kazuma Nakazawa Gifu University

Date submitted: 01 Jul 2009

Electronic form version 1.4