Abstract Submitted for the HAW09 Meeting of The American Physical Society

Beta-decay measurement of ⁴⁶Cr Y. WAKABAYASHI, JAEA, H. YA-MAGUCHI, T. HASHIMOTO, S. HAYAKAWA, Y. KURIHARA, D.N. BINH, D. KAHL, S. KUBONO, CNS, University of Tokyo, S. NISHIMURA, Y. GONO, RIKEN, M. SUGA, Y. FUJITA, Osaka University — For the rapid proton capture process (rp-process) in X-ray bursts and the core-collapse stage of supernovae. proton-rich pf-shell nuclei far from the line of stability play important roles. Studies of the feeding ratios and half-lives of the β and electron capture decays of these proton-rich pf-shell nuclei are of great astrophysical interest not only for nucleo synthesis but also for Fermi and Gamow-Teller transition study. The experiment to measure the half life of β decay of $^{46}\mathrm{Cr}$ was performed using the low-energy RI beam separator (CRIB) of the Center for Nuclear Study (CNS), University of Tokyo. The 46 Cr particles were produced by the 36 Ar + 12 C fusion reaction. A natural C foil of 0.56 mg/cm² was installed as the primary target. The ³⁶Ar primary beam was accelerated up to 3.6 MeV/nucleon by the RIKEN AVF cyclotron. A double sided Si strip detector (DSSD) of 500- μ m thickness was used as a β -ray detector. A Si detector of 1.5-mm thickness was placed just behind the DSSD for a β -ray detector. To measure β -delayed γ rays, 3 clover and 1 coaxial Ge detectors were set around the target chamber. The beam was pulsed to measure the half life of the β decay of 46 Cr. The β -delayed γ ray of 46 Cr was observed in this experiment. The experimental result will be discussed.

> Yasuo Wakabayashi JAEA

Date submitted: 01 Jul 2009 Electronic form version 1.4