Resonances of He isotopes using complex scaling method
TAKAYUKI MYO, Osaka Institute of Technology, RYOSUKE ANDO, KIYOSHI KATO, Hokkaido University — We investigate the properties of resonances of He isotopes, in particular, 6He, 7He and 8He. We describe the He isotopes with the cluster model of 4He+$n+n+n+n$. The many-body resonances (for example, five-body resonances of 8He) and non-resonant states are described within the correct boundary condition using the complex scaling method. We discuss and predict the energy spectra and decay widths of resonances of He isotopes. We also investigate the characteristics of the structures of each resonances, such as the spectroscopic factors, configuration mixing. In 7He, we derive the spectroscopic factors of 6He+n component of the obtained resonances, and also evaluate the corresponding strength functions of one-neutron removal reaction into 6He. It is found that the 6He(2^+) resonance gives the dominant contribution in the strength. Non-resonant contributions of 5He+n and 4He+$n+n$ are very small.