Abstract Submitted for the HAW09 Meeting of The American Physical Society

The STAR W Physics Program at RHIC JOSEPH SEELE, MIT —

The production of $W^{-(+)}$ bosons in polarized proton-proton collisions provides an ideal tool to study the spin-flavor structure of the proton, namely the polarized and unpolarized light quark sea asymmetries. $W^{-(+)}$ bosons are produced in $\bar{u}+d$ ($\bar{d}+u$) collisions and can be detected through their leptonic decays, $e^- + \bar{\nu}_e$ ($e^+ + \nu_e$), where only the respective charged lepton is measured. The discrimination of $\bar{u}+d(\bar{d}+u)$ quark combinations requires distinguishing between high p_T $e^{-(+)}$ through their opposite charge sign, which in turn requires precise tracking information. In spring 2009, STAR recorded its first data set at $\sqrt{s}=500 {\rm GeV}$ which allows for a first measurement of the cross section and single helicity asymmetry for $W^{-(+)}$ production at mid-rapidity in polarized proton-proton collisions. The status of the $W^{-(+)}$ production analysis will be presented.

Joseph Seele MIT

Date submitted: 01 Jul 2009 Electronic form version 1.4