Abstract Submitted for the HAW09 Meeting of The American Physical Society

 γ -ray spectroscopy of $^{11}_{\Lambda} B$ and $^{12}_{\Lambda} C$: Results of the KEK E566 ex**periment** MA YUE, E566 COLLABORATION — Bound excited states of $^{11}_{\Lambda}\text{B}$ and $^{12}_{\Lambda}\text{C}$ were populated following the $(\pi^+, K^+)^{12}_{\Lambda}\text{C}/^{11}_{\Lambda}\text{B}+\text{p}$ reaction. The 12-GeV/c primary proton beam was provided by KEK-PS and the secondary π^+ beams of 1.05 GeV/c were produced and momentum analyzed by the K6 beam line bombarding a 18.6-g/cm² Carbon target. A momentum of the scattered K⁺ was subsequently tracked by the SKS spectrometer system. γ rays from hypernuclei produced were detected by the Ge detector array, Hyperbal2, which consisted of 14 standard closed end-type and 6 Clover-type detectors each surrounded by BGO background suppressing counters. Construction of missing mass spectrum identified the bound state as well as the proton emitting unbound excited states of $^{12}_{\Lambda}\mathrm{C}$, the latter leading to $^{11}_{\Lambda}$ B. γ rays in coincidence with these regions were associated with the respective hypernucleus. Six γ -ray transitions, three of each belonging to ${}^{11}_{\Lambda}B$ and ${}^{12}_{\Lambda}C$, were observed. Cascade decays of ${}^{11}_{\Lambda}B(3/2^+ \to 1/2^+ \to 5/2^+)$ and the ground state doublet spacing of $^{12}_{\Lambda}$ C were newly identified from the present analysis. In addition, a 157-keV γ ray from a hyperfragment of $^{12}_{\Lambda}{\rm C}$ was observed. From the energy level spacings we check the consistency of the strength of spin-spin (Δ) and nuclear-spin orbit (S_N) in the effective AN interaction of the p-shell hypernuclei. Results of the analysis and the discussion will be presented.

Takeshi Koike

Date submitted: 02 Jul 2009 Electronic form version 1.4