Abstract Submitted for the HAW09 Meeting of The American Physical Society

Analysis of ²⁶Al + p elastic and inelastic scattering reactions in inverse kinematics at the HRIBF S.T. PITTMAN, K.Y. CHAE, K.L. JONES, B.H. MOAZEN, Univ. of TN, D.W. BARDAYAN, C.D. NESARAJA, S.D. PAIN, M.S. SMITH, ORNL, K.A. CHIPPS, CO School of Mines, R.L. KOZUB, J.F. SHRINER, JR., TN Tech., C. MATEI, ORAU, M. MATOS, LSU, P.D. O'MALLEY, W.A. PETERS, Rutgers Univ., P.D. PARKER, Yale Univ. — It is unknown to what degree novae contribute to the abundance of ²⁶Al in the Galaxy. Destruction through the ²⁶Al(p, γ)²⁷Si reaction may reduce the nova contribution, but uncertainties in the properties of ²⁷Si levels above the proton threshold limit reaction rate estimates. Inelastic proton scattering in these environments may also reduce the net production of ²⁶Al. To constrain estimates of the degree of ²⁶Al destruction in novae, the ²⁶Al + p elastic and inelastic reactions were investigated in inverse kinematics (E_{c.m.}= 0.5-1.5 MeV) at the HRIBF. The experiment and results of the analysis will be discussed.

> Stephen Pittman University of TN

Date submitted: 01 Jul 2009

Electronic form version 1.4