Abstract Submitted for the HAW09 Meeting of The American Physical Society

Collective behavior in ⁷¹As¹ R.A. KAYE, C.J. DROVER, S.R. ARORA, N.R. BAKER, Ohio Weslevan University, S.L. TABOR, T.A. HINNERS, C.R. HOFFMAN, S. LEE, Florida State University, J. DÖRING, BfS (Germany), J.K. BRUCKMAN, Monmouth College — High-spin states in ⁷¹As were studied using the 54 Fe(23 Na, $\alpha 2p$) reaction at 80 MeV provided by the John D. Fox superconducting accelerator at Florida State University. Prompt γ - γ coincidences were measured using an array of 10 Compton-suppressed Ge detectors. The yrast band based on the $\pi g_{9/2}$ intrinsic configuration was extended up to a $\left(\frac{37}{2}^{+}\right)$ state and now shows evidence of a band crossing near $\hbar\omega = 0.7$ MeV. Lifetimes of 17 excited states were measured using the Doppler-shift attenuation method applied to the experimental line shapes of decays in three known rotational bands. Transition quadrupole moments Q_t inferred from the lifetimes indicate that moderate to high collective behavior persists to the highest observed spins in the lowest positive- and negative-parity bands. The band suggested to be based on the $\pi f_{7/2}$ orbital shows similar collectivity and large intraband B(M1) strengths, but the associated Q_t values are somewhat smaller than expected from cranked Woods-Saxon calculations. These results will also be compared with the predictions of the projected shell model.

¹Supported by the U.S. National Science Foundation and Ohio Wesleyan University.

Robert Kaye Ohio Wesleyan University

Date submitted: 01 Jul 2009

Electronic form version 1.4