Precision photo-induced cross-section measurements using the monoenergetic and polarized photon beams at HIγS1 A.P. TONCHEV, C.R. HOWELL, E. KWAN, G. RUSEV, W. TORNOW, Duke, J.H. KELLEY, C. HUIBREGTSE, NCSU, S.L. HAMMOND, UNC, D. VIEIRA, J.B. WILHELMY, LANL — A research program has been initiated at TUNL to perform precision (γ,γ') and (γ,xn) cross-section measurements on actinide nuclei using the novel source of radiation at the High Intensity Gamma-ray Source (HIγS) facility. This facility provides nearly mono-energetic ($\Delta E/E \pm 2\%$) and intense (10^8 s$^{-1}$) photon beams after the recent upgrade. A precision knowledge of photoinduced processes is of practical importance for new reactor technologies, nuclear transmutation, and nuclear forensics. Our recent photodisintegration cross section measurements on radioactive 241Am targets in the energy range from $9 < E_\gamma < 16$ MeV will be presented. The experimental data for the 241Am(γ,n) reaction in the giant dipole resonance energy region will be compared with statistical nuclear-model calculations.

1This work was supported by the DOE under grants DE-FG02-97ER41033, DE-FG02-97ER41042, DE-FG02-97ER41041, and DE-FG52-06NA26155.