Microscopic description of fission-fragment properties1 WALID YOUNES, Lawrence Livermore Natl Lab — The development of a microscopic theory of fission remains one of the greatest challenges in nuclear physics. At the same time, recent advances in theoretical tools and computational power are bringing the goal of a predictive microscopic theory of fission within reach. In this talk, I will discuss the quantitative definition of scission, and the identification of scission configurations within the framework of Hartree-Fock-Bogoliubov (HFB) formalism with the Gogny effective interaction. I will present fission-fragment properties (shapes, kinetic and excitation energies) for low-energy fission of 240Pu, obtained using static HFB calculations and discuss the prospects for future work within a time-dependent treatment of fission.

1This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.