Abstract Submitted for the HAW09 Meeting of The American Physical Society

Search for Alpha particle Condensation in ¹⁶O TOSHIYA TAKA-HASHI, CYRIC, Tohoku University, MASATOSHI ITOH, HIDETOMO YOSHIDA, YASUHIRO SAKEMI, CYRIC, NAOYA SUGIMOTO, TETUYA NAGANO, AK-IHITO OIKAWA, TOMOHIRO HAYAMIZU, CYRIC, Tohoku University — Recently, Tohsaki et al were proposed the α particles condensed state existed in the vicinity of the threshold energy that decay into 3- and 4- α particles in the ¹²C and 16 O nuclei. The energy state of the 4- α particles condensation has not been specified yet in ¹⁶O though it is considered that the second 0⁺ state (7.65MeV) in ¹²C is the $3-\alpha$ particles condensed one theoretically. To verify the existence of the α condensed sation in 16 O, we have performed the experiment on the 12 C(16 O, 16 O*[X+ α]) 12 C reaction. The probability of the 4- α particles condensed state of ¹⁶O decays to 3- α condensed one of 12 C and an α particle is large. Therefore, we investigate the excited state in 16 O by obtaining the branching ratio of each decay channel of 16 O* \rightarrow 12C $(0_2^+) + \alpha,^{16}\text{O}^* \rightarrow ^{12}\text{C} (2_1^+) + \alpha,^{16}\text{O}^* \rightarrow ^{12}\text{C} (\text{g.s}) + \alpha.$ In this talk, We will report on result of the experiment and the MonteCalro simulation in ¹⁶O for excited state of 15.1MeV which was one of candidates for the 4- α condensation.

> Toshiya Takahashi CYRIC, Tohoku University

Date submitted: 06 Jul 2009 Electronic form version 1.4