HAW09-2009-000888

Abstract for an Invited Paper for the HAW09 Meeting of the American Physical Society

Radium-225: The Path to a Next Generation EDM Measurement¹

PETER MUELLER, Argonne National Laboratory

Permanent electric dipole moments (EDMs) in atoms or molecules are signatures of time (T)- and parity (P)-violation. Experimental searches for these EDMs represent an excellent window to physics beyond the standard model. In the nuclear sector, the best limits for EDMs are currently set by measurements on the neutron and the diamagnetic atom ¹⁹⁹Hg. A promising avenue for extending these searches is to take advantage of the large enhancement in the atomic EDM predicted for heavy octupole-deformed nuclei, as can be found in the radium and radon isotopic chains. One of these favorable case is ²²⁵Ra, which is calculated to be two to three orders of magnitude more sensitive to T-violating interactions than ¹⁹⁹Hg. We are developing a next generation EDM search around laser-cooled and trapped ²²⁵Ra, which involves measuring the nuclear spin precession of polarized ²²⁵Ra atoms confined in an optical dipole trap. I will report on our recent experimental progress and on the impact of next generation isotope facilities on this line of research.

¹This work is supported by DOE, Office of Nuclear Physics, under contract No. DE-AC02-06CH11357.