Abstract Submitted for the HAW09 Meeting of The American Physical Society

S-wave $\pi-K$ scattering length from lattice QCD KIYOSHI SASAKI, Tokyo Institute of Technology, NARUHITO ISHIZUKA, TAKESHI YAMAZAKI, Tsukuba University, MAKOTO OKA, Tokyo Institute of Technology — We present the S-wave $\pi-K$ scattering lengths for both the isospin 1/2 and 3/2 channels evaluated by using the finite size formula. We utilize the $N_f=2+1$ gauge configurations generated on $32^3\times 64$ lattice using the Iwasaki gauge action and the O(a)-improved Wilson action at 1/a=2.17 GeV. The quark masses correspond to $m_\pi=0.30$ -0.70 GeV. For I=1/2, to separate the effects from excited states, we construct a 2×2 matrix of the time correlation function and diagonalize it. Here, we adopt the two kinds of operators, $\bar{s}u$ and $\pi-K$. Our preliminary results show signs of the scattering lengths in agreement with experiment, namely attraction in I=1/2 and repulsion in I=3/2. We investigate the quark-mass dependence of the scattering length and also discuss the limitation of chiral perturbation theory.

Kiyoshi Sasaki Tokyo Institute of Technology

Date submitted: 03 Jul 2009 Electronic form version 1.4